Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Applied soft computing ; 2023.
Article in English | EuropePMC | ID: covidwho-2281447

ABSTRACT

It is crucial to develop spatiotemporal analysis tools to mitigate risks during a pandemic. Many dashboards encountered in the literature do not consider how the geolocation characteristics and travel patterns may influence the spread of the virus. This work brings an interactive tool that is capable of crossing information about mobility patterns, geolocation characteristics and epidemiologic variables. To do so, our system uses a mobility network, generated through anonymized mobile location data, which enables the division of a region into representative clusters. The clusters' aggregated socioeconomic, and epidemiologic indicators can be analyzed through multiple coordinated views. The proposal is to enable users to understand how different locations commute citizens, monitor risk over time, and understand what locations need more assistance, considering different layers of visualization, such as clusters and individual locations. The main novelty is the interactive way to construct the mobility network that defines the social distancing level and the way that risks are managed, since many different geolocation characteristics can be considered and visualized, such as socioeconomic indicators of a location, the economic importance of a set of locations, and the connection of important neighborhoods of a city with other cities. The proposed tool was built and verified by experts assembled to give scientific recommendations to the city administration of Recife, the capital city of Pernambuco. Our analysis shows how a policymaker could use the tool to evaluate different isolation scenarios considering the trade-off between economic activity and contamination risk, where the practical insights can also be used to tighten and relax mitigation measures in other phases of a pandemic.

2.
Appl Soft Comput ; 138: 110177, 2023 May.
Article in English | MEDLINE | ID: covidwho-2281448

ABSTRACT

It is crucial to develop spatiotemporal analysis tools to mitigate risks during a pandemic. Many dashboards encountered in the literature do not consider how the geolocation characteristics and travel patterns may influence the spread of the virus. This work brings an interactive tool that is capable of crossing information about mobility patterns, geolocation characteristics and epidemiologic variables. To do so, our system uses a mobility network, generated through anonymized mobile location data, which enables the division of a region into representative clusters. The clusters' aggregated socioeconomic, and epidemiologic indicators can be analyzed through multiple coordinated views. The proposal is to enable users to understand how different locations commute citizens, monitor risk over time, and understand what locations need more assistance, considering different layers of visualization, such as clusters and individual locations. The main novelty is the interactive way to construct the mobility network that defines the social distancing level and the way that risks are managed, since many different geolocation characteristics can be considered and visualized, such as socioeconomic indicators of a location, the economic importance of a set of locations, and the connection of important neighborhoods of a city with other cities. The proposed tool was built and verified by experts assembled to give scientific recommendations to the city administration of Recife, the capital city of Pernambuco. Our analysis shows how a policymaker could use the tool to evaluate different isolation scenarios considering the trade-off between economic activity and contamination risk, where the practical insights can also be used to tighten and relax mitigation measures in other phases of a pandemic.

3.
Sustain Cities Soc ; 65: 102574, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-909249

ABSTRACT

Given the recent outbreak of Sars-CoV-2, several countries started to seek different strategies to control contamination and minimize fatalities, which are usually the primary objectives for all strategies. Secondary objectives are related to economic factors, therefore ensuring that society would be able is to keep its essential activities and avoid supply disruptions. This paper presents an application of anonymized mobile phone users' location data to estimate population flow amongst cities with an origin-destination matrix. The work includes a clustering analysis of cities, which may enable policymakers (and epidemiologists) to develop public policies giving the appropriate consideration for each set of cities within a Province or State. Risk measures are included to analyze the severity of the spread among the clusters, which can be ranked. Then, intelligence can be obtained from the analysis, and some clusters could be isolated to avoid contagion while keeping their economic activities. Therefore, this analysis is reproducible for other states of Brazil and other countries and can be adapted for districts within a city, especially considering the possibility of a second wave COVID-19 pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL